Moving Charges and
Magnetism

4.5 MacgNETIC FIELD DUE TO A CURRENT ELEMENT,
BioT-SAvART LAw

All magnetic fields that we know are due to currents (or moving charges)
and due to intrinsic magnetic moments of particles. Here, we
shall study the relation between current and the magnetic field
it produces. It is given by the Biot-Savart’s law. Figure 4.9 shows
a finite conductor XY carrying current I. Consider an infinitesimal
element dl of the conductor. The magnetic field dB due to this
element is to be determined at a point P which is at a distance r
from it. Let 8 be the angle between dl and the displacement vector
r. According to Biot-Savart’s law, the magnitude of the magnetic
field dB is proportional to the current I, the element length |dll,
and inversely proportional to the square of the distance r. Its
direction* is perpendicular to the plane containing dl and r.
Thus, in vector notation,

Current element

Idlxr
dB o
r FIGURE 4.9 Illustration of
4, IdIxr the Biot-Savart law. The
== [4.11(a)] current element I dl
an T produces a field dB at a
where p,/4n is a constant of proportionality. The above distance r. The ® sign

expression holds when the medium is vacuum.
The magnitude of this field is,
|dB] =

an 12 [4.11(b)]

where we have used the property of cross-product. Equation [4.11 (a)]

constitutes our basic equation for the magnetic field. The proportionality
constant in SI units has the exact value,

Z—; —107Tm/A [4.11(c)]

We call u, the permeability of free space (or vacuum).

The Biot-Savart law for the magnetic field has certain similarities, as
well as, differences with the Coulomb’s law for the electrostatic field. Some
of these are:

() Both are long range, since both depend inversely on the square of
distance from the source to the point of interest. The principle of
superposition applies to both fields. [In this connection, note that
the magnetic field is linear in the source I dl just as the electrostatic
field is linear in its source: the electric charge.]

(ii) The electrostatic field is produced by a scalar source, namely, the
electric charge. The magnetic field is produced by a vector source
IdlL

* The sense of dlxr is also given by the Right Hand Screw rule : Look at the
plane containing vectors dl and r. Imagine moving from the first vector towards
second vector. If the movement is anticlockwise, the resultant is towards you.
If it is clockwise, the resultant is away from you.
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(iii) The electrostatic field is along the displacement vector joining the
source and the field point. The magnetic field is perpendicular to the
plane containing the displacement vector r and the current element
IdlL

(iv) There is an angle dependence in the Biot-Savart law which is not
present in the electrostatic case. In Fig. 4.9, the magnetic field at any
point in the direction of dI (the dashed line) is zero. Along this line,
0=0, sin =0 and from Eq. [4.11(a)], IdBI =0.

There is an interesting relation between ¢, the permittivity of free
space; u,, the permeability of free space; and c, the speed of light in
vacuum:

1 _ 1 1
ot = () g = T (107) = BX10°F ¢
We will discuss this connection further in Chapter 8 on the
electromagnetic waves. Since the speed of light in vacuum is constant,
the product u,¢, is fixed in magnitude. Choosing the value of either g, or
Uy, fixes the value of the other. In SI units, u, is fixed to be equal to
4n x 107 in magnitude.

Example 4.5 An element Al=Axi is placed at the origin and carries

a large current I = 10 A (Fig. 4.10). What is the magnetic field on the
y-axis at a distance of 0.5 m. Ax =1 cm.

y

—> » X
— s Ax —

FIGURE 4.10
Solution
I dl sin 6
|dB = Z_:: ——5— [using Eq. (4.11)]

dl=Ax=10"m,I=10A, r=05m =y, ,u0/4n=10‘7TTm

60=90° ;sin 6=1

107 x10x107
9B = 5107 - 4*10°T

The direction of the field is in the +z-direction. This is so since,
dixr=Axixyj =yAx(ixj) =yAxk
We remind you of the following cyclic property of cross-products,
ixj=k; jxk=1i;kxi=j
Note that the field is small in magnitude.
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In the next section, we shall use the Biot-Savart law to calculate the
magnetic field due to a circular loop.

4.6 MAGNETIC FIELD ON THE AXIS OF A CIRCULAR
Current Loor

In this section, we shall evaluate the magnetic field due to a circular coil
along its axis. The evaluation entails summing up the effect of infinitesimal
current elements (I dI) mentioned in the previous section.
We assume that the current I is steady and that the Y
evaluation is carried out in free space (i.e., vacuum).
Figure 4.11 depicts a circular loop carrying a steady
current I. The loop is placed in the y-z plane with its
centre at the origin O and has a radius R. The x-axis is
the axis of the loop. We wish to calculate the magnetic
field at the point P on this axis. Let xbe the distance of

P from the centre O of the loop.

Consider a conducting element dl of the loop. This is
shown in Fig. 4.11. The magnitude dB of the magnetic
field due to dlis given by the Biot-Savart law [Eq. 4.11(a)],

di

ag <t I |dl x r|
ar r°
Now r* = x* + R® . Further, any element of the loop

will be perpendicular to the displacement vector from
the element to the axial point. For example, the element

4.12) 2

dl in Fig. 4.11 is in the y-z plane, whereas, the element dl ) and its
displacement vector r from dl to the axial point P is in components along and
the x-y plane. Hence |dl x r|=rdl Thus, perpendicular to the axis.
Y
dB = 4n (x2 + RZ) (4.13)

The direction of dB is shown in Fig. 4.11. It is perpendicular to the
plane formed by dl and r. It has an x-component dB_and a component
perpendicular to x-axis, dB,. When the components perpendicular to
the x-axis are summed over, they cancel out and we obtain a null result.
For example, the dB, component due to dlis cancelled by the contribution
due to the diametrically opposite dl element, shown in
Fig. 4.11. Thus, only the x-component survives. The net contribution
along x-direction can be obtained by integrating dB, = dB cos §over the
loop. For Fig. 4.11,

R

cosf= W (4.14)

From Egs. (4.13) and (4.14),

dB, = HoIdl R
An (x*+R?

)3/2
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FIGURE 4.11 Magnetic field on the
axis of a current carrying circular
loop of radius R. Shown are the
magnetic field dB (due to a line
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The summation of elements dlover the loop yields 2xnR, the
circumference of the loop. Thus, the magnetic field at P due to entire
circular loop is

: Hol R’ :

B=BdA= 2(x* +R?)"” l e
As a special case of the above result, we may obtain the field at the centre
of the loop. Here x= 0, and we obtain,

Mol
“5R 1 (4.16)

The magnetic field lines due to a circular wire form closed loops and
are shown in Fig. 4.12. The direction of the magnetic field is given by
(another) right-hand thumb rule stated below:

Curl the palm of your right hand around the circular wire with the
fingers pointing in the direction of the current. The right-hand thumb
gives the direction of the magnetic field.

B,

%“é

FIGURE 4.12 The magnetic field lines for a current loop. The direction of

the field is given by the right-hand thumb rule described in the text. The

upper side of the loop may be thought of as the north pole and the lower
side as the south pole of a magnet.

Example 4.6 A straight wire carrying a current of 12 A is bent into a
semi-circular arc of radius 2.0 cm as shown in Fig. 4.13(a). Consider
the magnetic field B at the centre of the arc. (a) What is the magnetic
field due to the straight segments? (b) In what way the contribution
to B from the semicircle differs from that of a circular loop and in
what way does it resemble? (c) Would your answer be different if the
wire were bent into a semi-circular arc of the same radius but in the
opposite way as shown in Fig. 4.13(b)?

S\

(@) (b)

FIGURE 4.13
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Solution

(a) dl and r for each element of the straight segments are parallel.
Therefore, dl x r = 0. Straight segments do not contribute to
IBI.

(b) For all segments of the semicircular arc, dl x r are all parallel to
each other (into the plane of the paper). All such contributions
add up in magnitude. Hence direction of B for a semicircular arc
is given by the right-hand rule and magnitude is half that of a
circular loop. Thus B is 1.9 X 10™* T normal to the plane of the
paper going into it.

(c) Same magnitude of B but opposite in direction to that in (b).

Example 4.7 Consider a tightly wound 100 turn coil of radius 10 cm,
carrying a current of 1 A. What is the magnitude of the magnetic
field at the centre of the coil?

Solution Since the coil is tightly wound, we may take each circular
element to have the same radius R = 10 cm = 0.1 m. The number of
turns N = 100. The magnitude of the magnetic field is,

_ UNI _ 4nx107 x10” x1

B =1
2R 2x10

—21x10%=6.28x10"T

4.7 AMPERE’s CIrRcuiTAL Law

There is an alternative and appealing way in which the Biot-Savart law
may be expressed. Ampere’s circuital law considers an open surface with
a boundary (Fig. 4.14). The surface has current passing through
it. We consider the boundary to be made up of a number of small
line elements. Consider one such element of length dl. We take
the value of the tangential component of the magnetic field, B, at
this element and multiply it by the length of that element dl [Note:
B,dl=B-dl]. All such products are added together. We consider
the limit as the lengths of elements get smaller and their number
gets larger. The sum then tends to an integral. Ampere’s law
states that this integral is equal to u, times the total current
passing through the surface, i.e.,

$B-dl = I [4.17(a)]

where I is the total current through the surface. The integral is taken
over the closed loop coinciding with the boundary C of the surface. The
relation above involves a sign-convention, given by the right-hand rule.
Let the fingers of the right-hand be curled in the sense the boundary is
traversed in the loop integral §B-dl. Then the direction of the thumb
gives the sense in which the current I is regarded as positive.

For several applications, a much simplified version of Eq. [4.17(a)]
proves sufficient. We shall assume that, in such cases, it is possible to
choose the loop (called an amperian loop) such that at each point of the
loop, either

2021-22
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Boundary Surface

FIGURE 4.14
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Andre Ampere (1775 -
1836) Andre Marie Ampere
was a French physicist,
mathematician and chemist
who founded the science of
electrodynamics. Ampere
was a child prodigy
who mastered advanced
mathematics by the age of
12. Ampere grasped the
significance of Oersted’s
discovery. He carried out a
large series of experiments
to explore the relationship
between current electricity
and magnetism. These
investigations culminated
in 1827 with the
publication of the
‘Mathematical Theory of
Electrodynamic Pheno-
mena Deduced Solely from
Experiments’. He hypo-
thesised that all magnetic
phenomena are due to

circulating electric
currents. Ampere was
humble and absent-

minded. He once forgot an
invitation to dine with the
Emperor Napoleon. He died
of pneumonia at the age of
61. His gravestone bears
the epitaph: Tandem Felix
(Happy at last).

(i) B istangential to the loop and is a non-zero constant
B, or

(i) B is normal to the loop, or

(iii) Bvanishes.

Now, let L be the length (part) of the loop for which B
is tangential. Let I, be the current enclosed by the loop.
Then, Eq. (4.17) reduces to,

BL=p,, [4.17(b)]

When there is a system with a symmetry such as for
a straight infinite current-carrying wire in Fig. 4.15, the
Ampere’s law enables an easy evaluation of the magnetic
field, much the same way Gauss’ law helps in
determination of the electric field. This is exhibited in the
Example 4.9 below. The boundary of the loop chosen is
a circle and magnetic field is tangential to the
circumference of the circle. The law gives, for the left hand
side of Eq. [4.17 (b)], B. 2rr. We find that the magnetic
field at a distance r outside the wire is tangential and
given by

BXx2nr = u 1,

B=u, 1/ (27n) (4.18)

The above result for the infinite wire is interesting
from several points of view.

(i) It implies that the field at every point on a circle of
radius r, (with the wire along the axis), is same in
magnitude. In other words, the magnetic field
possesses what is called a cylindrical symmetry. The
field that normally can depend on three coordinates
depends only on one: r. Whenever there is symmetry,
the solutions simplify.

(i) The field direction at any point on this circle is
tangential to it. Thus, the lines of constant magnitude
of magnetic field form concentric circles. Notice now,
in Fig. 4.1(c), the iron filings form concentric circles.
These lines called magnetic field lines form closed
loops. This is unlike the electrostatic field lines which
originate from positive charges and end at negative
charges. The expression for the magnetic field of a
straight wire provides a theoretical justification to
Oersted’s experiments.

(iii) Another interesting point to note is that even though
the wire is infinite, the field due to it at a non-zero
distance is not infinite. It tends to blow up only when
we come very close to the wire. The field is directly
proportional to the current and inversely proportional
to the distance from the (infinitely long) current
source.

2021-22



Moving Charges and
Magnetism

(iv) There exists a simple rule to determine the direction of the magnetic
field due to a long wire. This rule, called the right-hand rule*, is:
Grasp the wire in your right hand with your extended thumb pointing

in the direction of the current. Your fingers will curl around in the

direction of the magnetic field.

Ampere’s circuital law is not new in content from Biot-Savart law.
Both relate the magnetic field and the current, and both express the same
physical consequences of a steady electrical current. Ampere’s law is to
Biot-Savart law, what Gauss’s law is to Coulomb’s law. Both, Ampere’s
and Gauss’s law relate a physical quantity on the periphery or boundary
(magnetic or electric field) to another physical quantity, namely, the source,
in the interior (current or charge). We also note that Ampere’s circuital
law holds for steady currents which do not fluctuate with time. The
following example will help us understand what is meant by the term
enclosed current.

Example 4.8 Figure 4.15 shows a long straight wire of a circular
cross-section (radius a) carrying steady current I. The current I is
uniformly distributed across this cross-section. Calculate the
magnetic field in the region r< a and r > a.

FIGURE 4.15

Solution (a) Consider the case r > a. The Amperian loop, labelled 2,
is a circle concentric with the cross-section. For this loop,
L=2nr

I, = Current enclosed by the loop = I

The result is the familiar expression for a long straight wire

B(@2=nn = ol
Mol
B =
onr [4.19(a)]

1
Bo—
°<r (r>a

(b) Consider the case r < a. The Amperian loop is a circle labelled 1.
For this loop, taking the radius of the circle to be r,

L=2xnr

8'¥ TTINVXF

* Note that there are two distinct right-hand rules: One which gives the direction
of B on the axis of current-loop and the other which gives direction of B
for a straight conducting wire. Fingers and thumb play different roles in

the two. 149
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Now the current enclosed I, is not I, but is less than this value.
Since the current distribution is uniform, the current enclosed is,

2 2
I, =I[’"2J _Ir
na a’

Ir?

Using Ampere’s law, B(2nr) = g, 7

I
B= (2”‘;2} [4.19(b)]
Bor (r<a

>
>

! i

a
FIGURE 4.16

Figure (4.16) shows a plot of the magnitude of B with distance r
from the centre of the wire. The direction of the field is tangential to
the respective circular loop (1 or 2) and given by the right-hand
rule described earlier in this section.

This example possesses the required symmetry so that Ampere’s
law can be applied readily.

It should be noted that while Ampere’s circuital law holds for any
loop, it may not always facilitate an evaluation of the magnetic field in
every case. For example, for the case of the circular loop discussed in
Section 4.6, it cannot be applied to extract the simple expression
B = pu,I/2R [Eq. (4.16)] for the field at the centre of the loop. However,
there exists a large number of situations of high symmetry where the law
can be conveniently applied. We shall use it in the next section to calculate
the magnetic field produced by two commonly used and very useful
magnetic systems: the solenoid and the toroid.

4.8 THE SOLENOID AND THE TOROID

The solenoid and the toroid are two pieces of equipment which generate
magnetic fields. The synchrotron uses a combination of both to generate
the high magnetic fields required. In both, solenoid and toroid, we come
across a situation of high symmetry where Ampere’s law can be
conveniently applied.
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